AN ASSESSMENT OF VERTICAL AND LATERAL PRESSURE COMMUNICATION AT SURMONT IN THE WABISKAW-McMURRAY FORMATIONS

JULY 2004

Prepared for

ALBERTA ENERGY RESEARCH INSTITUTE CONOCOPHILLIPS SURMONT PARTNERSHIP DEVON CANADA CORPORATION NEXEN INC. PARAMOUNT RESOURCES LTD. PETRO-CANADA

Prepared by

TABLE OF CONTENTS

INTRODUCTION1			
EXECUTIVE SUMMARY			
CONCLUSI	ONS		6
DISCUSSIO	N		
1.0 PETRO	PHY	SICS	
1	.1.1	Introduction	10
1	.1.2	Overview of Processing Sequence	11
1	.1.3	Available Core Analysis Data	13
1	.1.4	Available Log Data and Pre-Processing Steps	14
1	.1.5	Petrophysical Method	16
1	.1.6	Results	
1	.1.7	Observations	22
20 CEOL	OCV		23
2.0 GEOLC) 1 1	Introduction	20
2	····· • 1 2	Technical Approach	20
-		2121 Overview	25
		2.1.2.2 Data	
		2.1.2.3 Lavering	
		2.1.2.4 Mapping and Gridding	
		2.1.2.5 Comments on Figures and Tables	
2	2.1.3	Regional Geology	29
		2.1.3.1 Regional Geological Background	
		2.1.3.2 Regional Mapping	32
		2.1.3.3 Stratigraphic Relationships	
2	2.1.4	Data	
		2.1.4.1 Well Locations and Log Data	
		2.1.4.2 Cored Wells	
		2.1.4.3 Dipmeters	
		2.1.4.4 Seismic Data	
		2.1.4.5 Stratigraphy and Correlation	40
2	2.1.5	Stratigraphy and Correlation	

		2.1.5.1 Definition of Regional Markers	40
		2.1.5.2 Channel Complexes	45
		2.1.5.3 Discussion	47
		2.1.5.4 Correlation Results	50
	2.1.6	Core Review	50
	2.1.7	Seals and Fluid Contacts	52
		2.1.7.1 Gas-Water Contacts	52
		2.1.7.2 Bitumen-Water Contacts	52
		2.1.7.3 Seals	
	2.1.8	Mapping	56
		2.1.8.1 Top Structure Map	57
		2.1.8.2 Gross Thickness Maps	58
		2.1.8.3 Net-to-Gross Reservoir Thickness Maps	58
		2.1.8.4 Average Effective Porosity Maps	58
		2.1.8.5 Average Permeability Maps	58
		2.1.8.6 Other Maps	58
	2.1.9	Selected References	60
3.0	RESERVOI	R ANALYSIS	63
	3.1.1	Introduction	63
	3.1.2	Technical Approach (Pressure Data Review)	63
	3.1.3	Pressure Test Analysis	66
	3.1.4	Pool Delineation	71
	3.1.5	Observations	73
4.0	RESERVOI	R SIMULATION	75
	4.1.1	Introduction	75
	4.1.2	Technical Approach	75
	4.1.3	Model Construction	77
	4.1.4	Model Initialization	
	4.1.5	Reservoir Fluid Distribution	
	4.1.6	Reservoir Pressure Distribution	79
	4.1.7	Conceptual Modelling	80
	4.1.8	History Match Results	82
	4.1.9	History Match Problem Wells	84
	4.1.10	Gas in Place	84
	4.1.11	Observations	84

LIST OF TABLES

PETROPHYSICS

- Table P-1: Gas/Water Contacts in Key Wells
- **Table P-2:** Net Gas and Net Reservoir Results for Obvious Gas Sands (Key Wells)
- **Table P-3:** Net Gas and Net Reservoir for Inferred Gas Sands and Shaled-out Zones (Key Wells)

GEOLOGY

- **Table G-1:** Well Data (on CD-ROM)
- Table G-2: Cores Described
- **Table G-3:** Dipmeters Loaded in Petrel
- Table G-4: Layer Tops (on CD-ROM)
- Table G-5: Fluid Contacts (on CD-ROM)

RESERVOIR SIMULATION

- Table RS-1: Surmont History Match Pressure Match Notes and Observations
- Table RS-2: Surmont History Match Summary of Problem Wells
- Table RS-3: Original and Remaining Gas in Place and Wells by Pool
- Table RS-4: Reconciliation of Piezometer Pressure Data and Pool Assignments

LIST OF FIGURES

PETROPHYSICS FIGURES

Figure P-1: Core porosity versus permeability under overburden conditions.

Figure P-2: Vertical versus horizontal permeability under overburden conditions

Figure P-3: Raw log data for a typical Surmont well

Figure P-4: Results log data for a typical Surmont well

GEOLOGY TEXT FIGURES

Figure G-T1: Location Map. Yellow area includes buffer. Red Outline is Simulation Study Boundary. Wells use in Correlation Work denoted by Solid Red Triangles.

Figure G-T2: Stratigraphic Column for the Athabasca Area (from Strobl et al., 1995).

Figure G-T3: Regional Isopach of the McMurray Formation; Contoured from Public Data; Thin areas in bright colors – thick areas in dark colors; Geological Study Area depicted in Figure G-1 (above) shown here in Heavy Black Outline.

Figure G-T4: Wabiskaw Marker to Paleozoic Isopach Map; (Fig. 4 from Alberta Energy and Utilities Board: "Athabasca Wabiskaw-McMurray Regional Geological Study," EUB Report 2003-A, December 31, 2003).

Figure G-T5: A Typical Well (03-32-80-07) used for Regional Correlations, displaying Stratigraphic Nomenclature used in the Study. Note the prominent Coarsening-Upward Cycles in Layers 2 and 4.

Figure G-T6: Cross Section Index Map for Regional Correlation Sections based on Gamma Ray Log Signatures.

Figure G-T7: Regional Cross Section A-A'; Distance between Endpoints is approximately 40 km; for Location of Cross Section see Index Map in Figure G-12 above. Correlation Traces are Gamma Ray and Mirror-Image Gamma Ray.

Figure G-T8: Cross Section F-F'; Shale Channel along Depositional Strike; Distance between Endpoints is approximately 4 km.

Figure G-T9: Cross Section H-H'; Relationships of Sand and Shale Channels perpendicular to Depositional Strike; Note the Gradational Changes from Dominantly Shale to Dominantly Sand from Left to Right.

Figure G-T10: Layer 3 Net-to-Gross Thickness Map. White Cutouts represent Areas of Non-Reservoir (eliminated by Petrophysical Cutoffs). Hot Colours are Areas of the Highest Net-to-Gross Values, which identify Channel Complexes.

Figure G-T11: Diagrammatic Cross Section of Sandstone Filled Channel Complex incised in Coarsening-Upward Cycles; Note the Constraints on fluid flow in the Non-Channel Areas by the continuous Shale Markers (Barriers) versus Discontinuous Shale "Baffles" (Brown Lines) within Channel Column. The Dashed Red Lines represent Layer Boundaries Projected through Channels as used in the Model. The relative position of Red Lines can Change without impacting Model Results.

Figure G-T12: Index Map showing Locations of Described Cores

Figure G-T13: Cross Section FC-1 to FC-1'; Flattened on Structural Datum TVDSS (-300); Bitumen-Water Contact in 06-30-82-05 is absent in Wells to East at same Elevation. Note Gas-Water Contacts in Red and Gas Column (in red fill) from Neutron-Density Crossover. For Location of Cross Section see Figures at End of Report.

Figure G-T14: Layer 4 HPV; Note the Sinuous Line on the East Side separating Blue and Purple Colours; this is approximately the Bitumen-Water Contact.

Figure G-T15: Bitumen-Water Contacts in two Surmont Wells. The Well on the Right contains a True Basal Bitumen-Water Contact (Rt = <3 ohms) with Calculated Sw approaching 100% in Good Quality Sands. Contrast with Well on the Left, where Rt = >10 ohms and Sw is Averaging 60%+.

GEOLOGY REPORT FIGURES

Figure G-1: Final Location Map. Yellow area includes buffer. Red Outline is Simulation Study Boundary. Wells use in Correlation Work denoted by Solid Red Triangles.

Figure G-2: Stratigraphic Column for the Athabasca Area (from Strobl et al., 1995).

Figure G-3: Regional Structure of the top of McMurray Formation; Contoured from Public Data; High areas in hot colors – low areas in cold colors; Geological Study Area depicted in Figure G-1 (above) shown here in heavy black outline.

Figure G-4: Regional Structure of the top of Devonian; Contoured from Public Data; High areas in hot colors – low areas in cold colors; Geological Study Area depicted in Figure G-1 (above) shown here in heavy black outline.

Figure G-5: Regional Isopach of the McMurray Formation; Contoured from Public Data; Thin areas in hot colors – thick areas in cold colors; Geological Study Area depicted in Figure G-1 (above) shown here in heavy black outline.

Figure G-6: Wabiskaw Marker to Paleozoic Isopach Map; (Fig. 4 from Alberta Energy and Utilities Board: "Athabasca Wabiskaw-McMurray Regional Geological Study," EUB Report 2003-A, December 31, 2003).

Figure G-7: A Typical Well (03-32-80-07) used for Regional Correlations; Figure displays stratigraphic nomenclature used in the study. Note the prominent coarsening-upward cycles in Layers 2 and 4.

Figure G-8: Regional Index Map for Gamma Ray Correlation Cross Sections

Figure G-9: Regional Cross Section A-A'; Distance between Endpoints approximately 40 km. See Figure G-8 for location of Cross Section.

Figure G-10: Regional Cross Section B-B'; Distance between Endpoints approximately 35 km. See Figure G-8 for location of Cross Section.

Figure G-11: Regional Cross Section C-C'; Distance between Endpoints approximately 30 km. See Figure G-8 for location of Cross Section.

Figure G-12: Regional Cross Section D-D'; Distance between Endpoints approximately 40 km. See Figure G-8 for location of Cross Section.

Figure G-13: Cross Section E-E'; Note incised channel (arrows) in base of Upward Coarsening Sequence.

Figure G-14: Cross Section F-F'; Shale Channel along Depositional Strike; approximately 4 km.

Figure G-15: Cross Section G-G'; Channel cutting of Layer 2 in 11-35-82-08 and 07-25-82-08 and Upper Part of Layer 3 in 07-25-82-08.

Figure G-16: Cross Section H-H'; Relationships of Sand and Shale Channels perpendicular to Depositional Strike; Note the gradational changes from dominantly shale to dominantly sand from left to right.

Figure G-17: Cross Section I-I'; Good example of rapid change from sand to shale channel in orientation normal to depositional strike.

Figure G-18: Cross Section J-J'; Shale channel on left to sand channel (middle) to complex mixture of incisement and original coarsening-upward cycles (right).

Figure G-19: Cross Section J-J'; Same wells as previous figure but with results traces displayed. Compare the saturation profiles of each well versus GR profile.

Figure G-20: Cross Section K-K'; Note graphic differences in GR profiles between wells in area with low well density. Well control in such areas is insufficient to capture the details of local stratigraphic changes.

Figure G-21: Cross Section L-L'; This section is a good example showing how markers carry through several sections despite significant facies differences from well to well.

Figure G-22: Cross Section M-M'; Flattened on the "Green" marker. Note the thickness and variation of the incised channel fill below the "green" marker.

Figure G-23: Cross Section N-N'; Flattened on the "blue" marker. Middle well shows thick channel sands.

Figure G-24: Cross Section N-N'; The same section as previous figure, showing results traces. Note the quality of the reservoir sands in the middle well versus the other two. This shows how well the GR predicts reservoir quality.

Figure G-25: Cross Section P-P'; A good example showing progressive incision in Layer 4 from left to right and replacement of coarsening-upward section by channel fill.

Figure G-26: Typical Well (06-28-82-06) with Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts.

Figure G-27: Bitumen-Water Contacts in two Surmont Wells. The well on the right contains a true basal bitumen-water contact (Rt = <3 ohms) with calculated Sw of 100% in good quality sands. Contrast with well on the left, where Rt = >10 ohms and Sw is averaging 60%+.

Figure G-28: Bitumen-Water Contacts in two Surmont Wells. The well on the right contains a true basal bitumen-water contact (Rt = <3 ohms) with calculated Sw approaching 100% in good quality sands. Contrast with well on the left, where Rt = >10 ohms and Sw is averaging 60%+.

Figure G-29: Cross Section FC-1 to FC-1'; Flattened on Structural Datum TVDSS (-300); Bitumen-Water Contact in 06-30-82-05 is absent in Wells to East at same Elevation. Note Gas-Water Contacts in Red and Gas Column (in red fill) from Neutron-Density Crossover.

Figure G-30: Cross Section FC-2 to FC-2'; Flattened on Structural Datum TVDSS (-245); Bitumen-Water Contact in 11-04-83-05 is absent in Wells to East at same Elevation. Note Gas-Water Contact in Red and Gas Column (in red fill) from Neutron-Density Crossover.

Figure G-31: Cross Section FC-3 to FC-3'; Flattened on Structural Datum TVDSS (-210); Bitumen-Water Contact in 07-08-81-05 and 06-09-81-05 is absent in Well to East at same Elevation. Note Gas-Water Contact in Red and Gas Column (in red fill) from Neutron-Density Crossover.

EXPLOITATION TECHNOLOGIES INC.

Deleted: Calibrated

Figure G-32: Cross Section FC-4 to FC-4'; Flattened on Structural Datum TVDSS (-255); Bitumen-Water Contact in 06-30-83-05 is absent in Well to East at same Elevation. Note Gas-Water Contacts in Red and Gas Column (in red fill) from Neutron-Density Crossover.

Figure G-33: Diagrammatic Cross Section of Sandstone Filled Channel Complex incised in Coarsening-Upward Cycles; Note the constraints on fluid flow in the non-channel areas by the continuous shale markers (barriers) versus discontinuous shale "baffles" (Brown Lines) within channel column. The dashed Red Lines represent layer boundaries.

Figure G-34: Index Map showing Locations of Described Cores.

Figure G-35: Layer 4 - HPV; Note the sinuous line on the east side separating Blue and Purple colours; this is approximately the position of the basal bitumenwater contact.

Figure G-36: Pool Cross Section 1-1'; Results Traces, which include Gamma Ray	Deleted: Calibrated
(GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer	
Tops and Fluid Contacts; Hung on Top of McMurray (Layer 2).	

Figure G-37: Pool Cross Section 2-2'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).

Figure G-38: Pool Cross Section 3-3'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).

Figure G-39: Pool Cross Section 4-4'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).

Figure G-40: Pool Cross Section 5-5'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).

EXPLOITATION TECHNOLOGIES INC.

Deleted: Calibrated

Deleted: Calibrated

Deleted: Calibrated

Deleted: Calibrated

	Figure G-41: Pool Cross Section 6-6'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-42: Pool Cross Section 7-7'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-43: Pool Cross Section 8-8'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-44: Pool Cross Section 9-9'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-45: Pool Cross Section 10-10'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-46: Pool Cross Section 11-11'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
ļ	Figure G-47: Pool Cross Section 12-12'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-48: Pool Cross Section 13-13'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-49: Pool Cross Section 14-14'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-50: Pool Cross Section 15-15'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated

	Figure G-51: Pool Cross Section 16-16'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	
	Figure G-52: Pool Cross Section 17-17'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	
	Figure G-53: Pool Cross Section 18-18'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	
	Figure G-54: Pool Cross Section 19-19'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	
	Figure G-55: Pool Cross Section 20-20'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	
	Figure G-56: Pool Cross Section 21-21'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	
	Figure G-57: Pool Cross Section 22-22'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	
	Figure G-58: Pool Cross Section 23-23'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	
	Figure G-59: Pool Cross Section 24-24'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	

	Figure G-60: Pool Cross Section 25-25'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-61: Pool Cross Section 26-26'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-62: Pool Cross Section 27-27'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-63: Pool Cross Section 28-28'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-64: Pool Cross Section 29-29'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-65: Pool Cross Section 30-30'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-66: Pool Cross Section 31-31'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-67: Pool Cross Section 32-32'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of Basal Wabiskaw (Layer 1).	Deleted: Calibrated
	Figure G-68: Pool Cross Section 33-33'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	Deleted: Calibrated
l	Figure G-69: Pool Cross Section 34-34'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	Deleted: Calibrated

	Figure G-70: Pool Cross Section 35-35'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	 Deleted: Calibrated
	Figure G-71: Pool Cross Section 36-36'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	 Deleted: Calibrated
	Figure G-72: Pool Cross Section 37-37'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	 Deleted: Calibrated
	Figure G-73: Pool Cross Section 38-38'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	 Deleted: Calibrated
	Figure G-74: Pool Cross Section 39-39'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	 Deleted: Calibrated
	Figure G-75: Pool Cross Section 40-40'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	 Deleted: Calibrated
	Figure G-76: Pool Cross Section 40-40'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Datum = TVDSS of (–250).	 Deleted: Calibrated
	Figure G-77: Pool Cross Section 41-41'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	 Deleted: Calibrated
	Figure G-78: Pool Cross Section 42-42'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	 Deleted: Calibrated
	Figure G-79: Pool Cross Section 43-43'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).	 Deleted: Calibrated

	Figure G-80: Pool Cross Section 44-44'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).
	Figure G-81: Pool Cross Section 45-45'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).
	Figure G-82: Figure intentionally removed.
	Figure G-83: Pool Cross Section 46-46'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).
	Figure G-84: Pool Gross Section 47-47'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).
	Figure G-85: Pool Cross Section 48-48'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).
	Figure G-86: Pool Cross Section 49-49'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).
	Figure G-87: Pool Cross Section 50-50'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).
	Figure G-88: Pool Cross Section 51-51'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).
	Figure G-89: Pool Cross Section 52-52'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2).

Figure G-90: Pool Cross Section 53-53'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2). Deleted: Calibrated Figure G-91: Pool Cross Section 54-54'; Results Traces, which include Gamma Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Hung on Top of the McMurray (Layer 2). Figure G-92: Pool Cross Section 54-54'; Results Traces, which include Gamma Deleted: Calibrated Ray (GR), Effective Porosity (PhiE), and Water Saturation (Sw) with Posted Layer Tops and Fluid Contacts; Datum = TVDSS of (-250). Figure G-93: Top of Basal Wabiskaw Structure Map Figure G-94: Layer 1 Gross Thickness Map Figure G-95: Layer 2 Gross Thickness Map Figure G-96: Layer 3 Gross Thickness Map Figure G-97: Layer 4 Gross Thickness Map Figure G-98: Layer 5 Gross Thickness Map Figure G-99: Layer 6 Gross Thickness Map Figure G-100: Layer 1 Net-to-Gross Thickness Map Figure G-101: Layer 2 Net-to-Gross Thickness Map Figure G-102: Layer 3 Net-to-Gross Thickness Map Figure G-103: Layer 4 Net-to-Gross Thickness Map Figure G-104: Layer 5 Net-to-Gross Thickness Map Figure G-105: Layer 6 Net-to-Gross Thickness Map Figure G-106: Layer 1 Average Effective Porosity (PhiE) Map

Figure G-107: Layer 2 Average Effective Porosity (PhiE) Map Figure G-108: Layer 3 Average Effective Porosity (PhiE) Map Figure G-109: Layer 4 Average Effective Porosity (PhiE) Map Figure G-110: Layer 5 Average Effective Porosity (PhiE) Map Figure G-111: Layer 6 Average Effective Porosity (PhiE) Map Figure G-112: Layer 1 Average Permeability (k) Map Figure G-113: Layer 2 Average Permeability (k) Map Figure G-114: Layer 3 Average Permeability (k) Map Figure G-115: Layer 4 Average Permeability (k) Map Figure G-116: Layer 5 Average Permeability (k) Map

RESERVOIR ANALYSIS FIGURES

Figure RA-1: Surmont Area Wells

Figure RA-2: Analytical Pool Delineations

Figure RA-3: Reservoir Pressure Distribution 1986

Figure RA-4: Reservoir Pressure Distribution 2002

RESERVOIR SIMULATION FIGURES

Figure RS-1: Conceptual Model – Varying Aspect Ratio

Figure RS-2: Conceptual Model – Varying Permeability

Figure RS-3: Conceptual Model – High Pressure System

Figure RS-4: History Match Pool Delineations

Figure RS-4A: History Match Pool Delineations Including Piezo Data

Figure RS-5 – Figure RS-93: History Match Plots for Individual Wells

Note: **Figure RS-50** has been intentionally deleted. This was a buffer area well and not subject to history matching criteria.

LIST OF APPENDICES

Appendix P-1: PDF, PLT and LAS Files for 648 Analyzed Wells (Petrophysics CD-ROM)

Appendix P-2: Net Pay and Net Reservoir Property Tables (Petrophysics CD-ROM)

Appendix G-1: Digitally Drafted Core Description (Well A-10-26-80-07)

Appendix G-2: Undrafted Core Descriptions	
Appendix G-3; Core photos (Report CD-ROM)	Deleted: 2
Appendix G-4; PETREL Database (Report CD-ROM)	Deleted: 3
Appendix RA-1: Pressure versus Time Spreadsheet	
Appendix RA-2: Piezometer Pressures versus Time	
Appendix RA-3: Pressure versus Time Well Group Plots	